Control of neuronal excitability by phosphorylation and dephosphorylation of sodium channels.
نویسندگان
چکیده
Currents through voltage-gated sodium channels drive action potential depolarization in neurons and other excitable cells. Smaller currents through these channels are key components of currents that control neuronal firing and signal integration. Changes in sodium current have profound effects on neuronal firing. Sodium channels are controlled by neuromodulators acting through phosphorylation of the channel by serine/threonine and tyrosine protein kinases. That phosphorylation requires specific molecular interaction of kinases and phosphatases with the channel molecule to form localized signalling complexes. Such localization is required for effective neurotransmitter-mediated regulation of sodium channels by protein kinase A. Analogous molecular complexes between sodium channels, kinases and other signalling molecules are expected to be necessary for specific and localized transmitter-mediated modulation of sodium channels by other protein kinases.
منابع مشابه
Determination of Sialyl trnsferase activity and effect of Phosphorylation and dephosphorylation Mechanisms
Halakhor S1, Qujeq D2, Shikhpour R3 1. Instructor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 2. Associate professor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 3. GP, Babol, Iran Abstract Background: Previous reports show that phosphorylation anddepho...
متن کاملThe modulatory effects of orexin B on the calcium channels activity in neuronal cells of Helix aspersa (garden snail)
Introduction: The functional effects of orexin-B on the calcium spikes and excitability of the neuronal soma membrane of garden snail, Helix aspersa were studied. Methods: Conventional intracellular recording, under the current clamp conditions was performed to examine the effects of orexin-B on the configuration and electrophysiological properties of calcium spikes. Results: Application o...
متن کاملDynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation.
Voltage-gated K(+) channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K(+) channel is the major delayed rectifier K(+) channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation....
متن کاملBidirectional activity-dependent regulation of neuronal ion channel phosphorylation.
Activity-dependent dephosphorylation of neuronal Kv2.1 channels yields hyperpolarizing shifts in their voltage-dependent activation and homoeostatic suppression of neuronal excitability. We recently identified 16 phosphorylation sites that modulate Kv2.1 function. Here, we show that in mammalian neurons, compared with other regulated sites, such as serine (S)563, phosphorylation at S603 is supe...
متن کاملElectrophysiological investigation of the cellular effect of anethole, the chief constitute of anise, on F1 neuronal excitability in garden snail
Introduction: Anethole is the main constituent of Pimpinella anisum L. (anise), a herbaceous annual plant which has several therapeutic effects. In the folk medicine, anise is employed as an antiepileptic drug. Specifically, this study was focused on the cellular effect of anethole, an aromatic compound in essential oils from anise and camphor. Anethole has various physiological effects on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 34 Pt 6 شماره
صفحات -
تاریخ انتشار 2006